Element Classes
Capacitor
- class SQcircuit.Capacitor(value, unit=None, requires_grad=False, Q='default', error=0, id_str=None)[source]
- Bases: - Element- Class that contains the capacitor properties. - Parameters:
- value ( - float) – The value of the capacitor.
- unit ( - Optional[- str]) – The unit of input value. If- unitis “THz”, “GHz”, and, etc., the value specifies the charging energy of the capacitor. If- unitis “fF”, “pF”, and, etc., the value specifies the capacitance in farad. If- unitis- None, the default unit of capacitor is “GHz”.
- requires_grad ( - bool) – A boolean variable that specifies whether autograd should record operations on this element. This feature is specific to the- PyTorchengine.
- Q ( - Union[- Any,- Callable[[- float],- float]]) – Quality factor of the dielectric of the capacitor which is one over tangent loss. It can be either a float number or a Python function of angular frequency.
- error ( - float) – The error of fabrication in percentage.
- id_str ( - Optional[- str]) – ID string for the capacitor.
 
 - value_unit = 'F'
 - property requires_grad: bool
 
Inductor
- class SQcircuit.Inductor(value, unit=None, requires_grad=False, cap=None, Q='default', error=0, loops=None, id_str=None)[source]
- Bases: - Element- Class that contains the inductor properties. - Parameters:
- value ( - float) – The value of the inductor.
- unit ( - str) – The unit of input value. If- unitis “THz”, “GHz”, and ,etc., the value specifies the inductive energy of the inductor. If- unitis “fH”, “pH”, and ,etc., the value specifies the inductance in henry. If- unitis- None, the default unit of inductor is “GHz”.
- requires_grad ( - bool) – A boolean variable that specifies whether autograd should record operations on this element. This feature is specific to the- PyTorchengine.
- loops ( - Optional[- List[- Loop]]) – List of loops in which the inductor resides.
- cap ( - Optional[- Capacitor]) – Capacitor associated to the inductor, necessary for correct time-dependent external fluxes scheme.
- Q ( - Union[- Any,- Callable[[- float,- float],- float]]) – Quality factor of the inductor needed for inductive loss calculation. It can be either a float number or a Python function of angular frequency and temperature.
- error ( - float) – The error in fabrication as a percentage.
- id_str ( - Optional[- str]) – ID string for the inductor.
 
 - value_unit = 'H'
 - property requires_grad: bool
 
Junction
- class SQcircuit.Junction(value, unit=None, requires_grad=False, cap=None, A=1e-07, x=3e-06, delta=0.00034, Y='default', error=0, loops=None, id_str=None)[source]
- Bases: - Element- Class that contains the Josephson junction properties. - Parameters:
- value ( - float) – The value of the Josephson junction.
- unit (str) – The unit of input value. The - unitcan be “THz”, “GHz”, and ,etc., that specifies the junction energy of the inductor. If- unitis- None, the default unit of junction is “GHz”.
- requires_grad ( - bool) – A boolean variable that specifies whether autograd should record operations on this element. This feature is specific to the- PyTorchengine.
- loops ( - Optional[- List[- Loop]]) – List of loops in which the Josephson junction reside.
- cap ( - Optional[- Capacitor]) – Capacitor associated to the josephson junction, necessary for the correct time-dependent external fluxes scheme.
- A ( - float) – Normalized noise amplitude related to critical current noise.
- x ( - float) – Quasiparticle density
- delta ( - float) – Superconducting gap
- Y ( - Union[- Any,- Callable[[- float,- float],- float]]) – Real part of admittance.
- error ( - float) – The error in fabrication as a percentage.
- id_str ( - Optional[- str]) – ID string for the junction.
 
 - value_unit = 'Hz'
 - property requires_grad: bool
 
Loop
- class SQcircuit.Loop(value=0, A=1e-06, requires_grad=False, id_str=None)[source]
- Bases: - object- Class that contains the inductive loop properties, closed path of inductive elements. - Parameters:
- value ( - float) – Value of the external flux in the loop.
- requires_grad ( - bool) – A boolean variable that specifies whether autograd should record operations on this loop. This feature is specific to the- PyTorchengine.
- A ( - float) – Normalized noise amplitude related to flux noise.
- id_str ( - Optional[- str]) – ID string for the loop.
 
 - property requires_grad: bool
 - value(random=False)[source]
- Return the value of the external flux. If random is True, it samples from a normal distribution with variance defined by the flux noise amplitude. - Parameters:
- random ( - bool) – A boolean flag which specifies whether the output is deterministic or random.
- Return type:
- float